
1SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Application Report
SLAA547B–July 2013–Revised March 2018

C Implementation of Cryptographic Algorithms

Jace H. Hall

ABSTRACT
This application report discusses the implementations of the AES, DES, TDES, and SHA-2 cryptographic
algorithms written in the C programming language. These software cryptographic solutions were made for
devices without hardware acceleration for these algorithms. This document does not go into common
methods or practices using these algorithms; however, it does describe how to use the algorithms in
program code as well as the nature of the algorithms themselves.

Project collateral and source code mentioned in this application report can be downloaded from the
following links:

AES-128

3DES

SHA-256

NOTE: This document may be subject to the export control policies of the local government.

Contents
1 Software Benchmarks... 2

1.1 AES Benchmarks ... 2
1.2 DES Benchmarks ... 3
1.3 SHA-2 Benchmarks... 3

2 Using Library Functions ... 4
2.1 AES 128.. 4
2.2 DES... 5
2.3 3DES ... 6
2.4 SHA-2 .. 7

3 Overview of Library Functions ... 9
3.1 AES 128.. 9
3.2 DES and 3DES .. 10
3.3 SHA-256 and SHA-224... 13

4 Cryptographic Standard Definitions.. 13
4.1 AES ... 13
4.2 DES and 3DES .. 19
4.3 SHA-256 and SHA-224... 25

5 References .. 28

List of Figures

1 AES Algorithm Structure .. 14
2 Structure of the Key and the State... 15
3 Subbytes Operation.. 15
4 Shiftrows Operation .. 16
5 Mixcolumns Operation... 16
6 Addroundkey Operation ... 17

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B
http://www.ti.com/tool/AES-128
http://www.ti.com/tool/des_102612
http://www.ti.com/tool/sha-256

Software Benchmarks www.ti.com

2 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

7 Expanding First Column of Next Round Key ... 18
8 Expanding Other Columns of Next Round Key .. 18
9 DES Algorithm Structure .. 20
10 DES Function Block.. 21
11 Key Schedule Function Diagram ... 22
12 3DES Encoding and Decoding Algorithms.. 23
13 DES Encode and Decode in CBC Mode.. 24
14 Example of Message Padding.. 25
15 Visualization of the Hashing Loop of SHA-256... 26

List of Tables

1 Optimization Settings in IAR for Benchmark Testing ... 2
2 Benchmarks for AES Library Functions Encrypting One 16 Byte Block.. 2
3 DES Code Size Benchmarks... 3
4 Performance of Several DES Modes ... 3
5 Benchmarks for SHA-256 Library Function .. 3
6 Minimum Sizes of M[] .. 7
7 AES 128 Table of Contents .. 9
8 DES and 3DES Table of Contents... 10
9 SHA-256 and SHA-224 Table of Contents.. 13

Trademarks
MSP430 is a trademark of Texas Instruments.
IAR Embedded Workbench is a registered trademark of IAR Systems.
All other trademarks are the property of their respective owners.

1 Software Benchmarks
All code was tested and benchmarked on the MSP430™ platform using IAR Embedded Workbench® IDE
as the compiler tool. The optimization columns in the benchmark tables indicate the type of optimization
used in IAR. Table 1 describes the settings used.

Table 1. Optimization Settings in IAR for Benchmark Testing

Optimized for Optimization Level Aggressive Unrolling Aggressive In-Lining
Size High => Size No No

Speed High => Speed Yes Yes

1.1 AES Benchmarks

Table 2. Benchmarks for AES Library Functions Encrypting One 16 Byte Block

AES (ENC/DES Function)
Optimization

AES (ENC Only Function)
Optimization

Speed Size Speed Size

Memory
(KB)

RAM (B) 34 34
Memory (KB)

RAM (B) 34 34
Const 0.55 0.55 Const 0.29 0.29
Code 1 0.83 Code 0.67 0.51

Clock Cycles (kilo-cycles) 7.9 12.3 Clock Cycles (kilo-cycles) 7.3 11.3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

www.ti.com Software Benchmarks

3SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

1.2 DES Benchmarks

Table 3. DES Code Size Benchmarks

DES Code Size
Optimization

Speed Size
RAM (B) 288 288
Const (KB) 2.3 2.3
Code (KB) 3.3 2.17

Table 4. Performance of Several DES Modes

DES Clock Cycle Count (kilo-cycles)
Optimization

Speed Size
DES (FULL) (One Data Block) 41 42.6
3DES (FULL) (One Data Block) 135.6 143.1
DES Key Scheduler (EN0 or DE1 modes) 34.7 36
DES Key Scheduler (ENDE mode) 69 72
DES Encode/Decode (One Data Block) 2.7 3.8
DES CBC Encode/Decode (2-block chain) 5.5 7.7
3DES CBC Encode/Decode (2-block chain) 139 149.7

1.3 SHA-2 Benchmarks

(1) Values in () indicate a hashing of 448 bits < Data< 960 bits or 2 blocks of data.

Table 5. Benchmarks for SHA-256 Library Function

SHA-256 (Data < 448 bits) (1)

Optimization
Speed Size

Memory (KB)
RAM 0.328 0.328
Const 0.264 0.328
Code 3.72 1.87

Clock Cycles (kilo cycles) 34.1 (67) 44.3 (86.7)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Using Library Functions www.ti.com

4 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

2 Using Library Functions
The algorithms were implemented using C. The following sections show how an encryption or decryption
can be calculated using the functions provided in this application report.

2.1 AES 128

2.1.1 Encrypting With AES 128
The following code example shows how an AES encryption can be performed.

#include "msp430xxxx.h"
#include "TI_aes.h"
//#include "TI_aes_encr_only.h" //Alternative method

int main(void)
{
unsigned char state[] = { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd, 0xb7,

0x80, 0x70, 0xb4, 0xc5, 0x5a};
unsigned char key[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
aes_enc_dec(state, key, 0); // "0" indicates Encryption
//aes_encrypt(state, key); //Alternative Method of Encryption
return 0;

This short program defines two arrays of the type unsigned character. Each array is 16 bytes long. The
first one contains the plaintext and the other one the key for the AES encryption.

After the function aes_enc_dec() returns, the encryption result is available in the array state.

2.1.2 Decrypting With AES 128
Decryption can be done in a similar way to encryption. First, two arrays are defined. When a decryption
needs to be performed, one array contains the key and the other one the cipher text.

After the function aes_enc_dec() returns, the decryption result is available in the array state.

#include "msp430xxxx.h"
#include "TI_aes.h"

int main(void)
{
unsigned char state[] = { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,

0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};
unsigned char key[] = {0x00, 0x01, 0x02, 0x03, 0x04, 05, 0x06, 0x07,

0x08, 0x0, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
aes_enc_dec(state, key, 1); // "1" indicates Decryption
return 0;
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

www.ti.com Using Library Functions

5SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

2.2 DES

2.2.1 Setting the Key Schedule for DES
The following code example shows how to set the key schedule for DES encryption or decryption rounds.
This step must be performed before encryption or decryption can begin.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{ des_ctx dc1; // Key schedule structure

des_ctx dc2; // Key schedule structure

unsigned char key[8] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd, 0xfe};

Des_Key(&dc1, key, EN0); // Sets up key schedule for Encryption only
Des_Key(&dc1, key, DE1); // Sets up key schedule for Decryption only
Des_Key(&dc2, key, ENDE); // Sets up key schedule for Encryption and Decryption

return 0;
}

2.2.2 Encrypting and Decryption With DES
The following code example shows a full encryption then decryption process on a single block of data. The
key scheduler is set to populate both key schedules. The results of the operations are stored in the
original data array.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{

des_ctx dc1; // Key schedule structure
unsigned char *cp;
unsigned char data[] = {0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0xd4, 0x30};
unsigned char key[8] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xfe};
cp = data;

Des_Key(&dc1, key, ENDE); // Sets up key schedule for Encryption and
Decryption

Des_Enc(&dc, cp, 1); //Encrypt Data, Result is stored back into Data
Des_Dec(&dc, cp, 1); //Decrypt Data, Result is stored back into Data

return 0;
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Using Library Functions www.ti.com

6 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

2.2.3 Encryption and Decryption With DES CBC Mode
The following code example shows a full encryption then decryption process on multiple blocks of data
using Cipher-Block Chaining (CBC). The key scheduler is set to populate both key schedules. The results
of the operations are stored in the original data array.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{

des_ctx dc1; // Key schedule structure
unsigned char *cp;
unsigned char data[] = { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,

0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};
unsigned char key[8] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xfe};
cp = data;
Des_Key(&dc1, key, ENDE); // Sets up key schedule for Encryption and

Decryption
DES_Enc_CBC(&dc, cp, 2); //Encrypt Data, Result is stored back into Data
DES_Dec_CBC(&dc, cp, 2); //Decrypt Data, Result is stored back into Data

return 0;
}

2.3 3DES

2.3.1 Encrypting and Decrypting With Triple DES
The following code example shows the encryption and decryption process using 3DES with and without
CBC. The key scheduler is set to populate both key schedules. The results of the operations are stored in
the original data array.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{

des_ctx dc1; // Key schedule structure
unsigned char *cp;
unsigned char data[] = {0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8,

0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};
unsigned char key[8] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07};
unsigned char key1[8] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xfe};
unsigned char key2[8] = {0x01,0x23,0x45,0x67,0x89,0xab,0xdc,0xfe};
cp = data;

///First 8 bytes of Data will be Encrypted then Decrypted
TripleDES_ENC(&dc, cp, 1, key, key1, key2); // 3DES Encrypt
TripleDES_DEC(&dc, cp, 1, key, key1, key2); // 3DES Decrypt

/// All 16 Bytes of Data will be Encrypted then Decrypted with CBC
TripleDES_ENC_CBC(&dc, cp, 2, key, key1, key2); // 3DES Encrypt
TripleDES_DEC_CBC(&dc, cp, 2, key, key1, key2); // 3DES Decrypt

return 0;
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

www.ti.com Using Library Functions

7SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

2.4 SHA-2

2.4.1 Hashing With SHA-256
The following code example shows an example of a data hash using SHA-256.

#include "msp430xxxx.h"
#include "TI_SHA2.h"

uint32_t M[32]; //Message array to be hashed
uint64_t L = 0x0000000000000000; //Bit Length of message to be hashed
uint32_t Ha[8]; // Hash Array to be used during calculation and to store result

int main(void)
{

M[0] =0x41424344; //Data
M[1] =0x45464748; //Data
M[2] =0x494A4B4C; //Data
L = 0x0000000000000060 //Length == 96 bits or 0x60 bits

SHA_256(M, L, Ha, 1); // "1" indicates SHA-256 mode

return 0;
}

Although this example does not show full initialization of the array M[], all relevant values have been
populated with meaningful data. M[] must be initialized to sizes equal to a 512-bit block of data or hashing
block. If the message to be hashed exceeds 448 bits within a hashing block, then an additional hashing
block must be reserved. Table 6 explains minimum sizes of M[] according to message size.

Table 6. Minimum Sizes of M[]

Message Size x (bits) Minimum Size of Array M[]
× < 448 M[16]

448 ≤ × ≤ 512 M[32]
512 < × < 960 M[32]
960 ≤ × < 1024 M[48]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Using Library Functions www.ti.com

8 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

2.4.2 Hashing With SHA-224
The following code example shows a hashing of a message using SHA-224. Although an array of eight
32-bit words are used for the hashing process, only the first seven 32-bit words are used as the hash
result.

#include "msp430x26x.h"
#include "TI_SHA2.h"

uint32_t M[32]; //Message array to be hashed
uint64_t L = 0x0000000000000000; //Bit Length of message to be hashed
uint32_t Ha[8]; // Hash Array to be used during calculation and to store result

int main(void)
{

M[0] =0x41424344; //Data
M[1] =0x45464748; //Data
M[2] =0x494A4B4C; //Data
L = 0x0000000000000060 //Length == 96 bits or 0x60 bits

SHA_256(M, L, Ha, 0); // "0" indicates SHA-224 mode.

return 0;
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

www.ti.com Overview of Library Functions

9SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

3 Overview of Library Functions
The following sections describe all modes of operation and parameters for the Software Cryptography
Library.

3.1 AES 128
Software implementation is of 128-bit AES encryption. This means the algorithm uses a 128-bit key to
encrypt 128-bit blocks of data. The library was optimized for memory usage (Flash and RAM). There are
two functions available from the library: aes_enc_dec() and aes_encrypt(). Both functions overwrite the
data block given with its encrypted value.

Table 7. AES 128 Table of Contents
Title .. Page

aes_enc_dec —(unsigned char *state, unsigned char *key, unsigned char dir); .. 9
aes_encrypt —(unsigned char *state, unsigned char *key); ... 9

aes_enc_dec (unsigned char *state, unsigned char *key, unsigned char dir);

This function can encrypt or decrypt a message using AES. Use this function if both
modes are needed. Data must be in hex form. Function does not convert ASCII text.

Inputs
• Unsigned char *state – Pointer to data block to be encrypted
• Unsigned char *key – Pointer to 128-bit key
• Unsigned char dir – Value that dictates Encryption (‘0’) or Decryption (‘1’)

aes_encrypt (unsigned char *state, unsigned char *key);

This function only performs AES encryption. Data must be in hex form. Function does
not convert ASCII text. It is possible to decrypt messages while only using the encrypt
function. This can be done by encrypting a plain text message with an AES decrypt
action, then feeding that cipher text to the AES encryption function.

NOTE: A separate header and code file are made specifically for this function;
this is intended for code size sensitive applications.

Inputs
• Unsigned char *state – Pointer to data block to be encrypted
• Unsigned char *key – Pointer to 128-bit key

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Overview of Library Functions www.ti.com

10 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

3.2 DES and 3DES
Software implementation uses a 64-bit key to encipher 64-bit blocks. The DES takes in a 64-bit key, where
every eighth bit is used for parity. Therefore, the effective key length is 56 bits. 3DES uses three 64-bit
keys and, therefore, has an effective key length of 168-bits.

The DES library functions make use of key structure of type des_ctx defined in the helper file. This
structure stores the key schedule for both encrypt and decrypt functions.

Table 8. DES and 3DES Table of Contents
Title .. Page

Des_Key —(des_ctx *(Key Structure), unsigned char *pucKey, short sMode); .. 10
Des_Enc —(des_ctx *(Key Structure),unsigned char *pucData, short sBlocks); .. 10
Des_Dec —(ddes_ctx *(Key Structure), unsigned char *pucData, short sBlocks); .. 11
DES_ENC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucIV); 11
DES_DEC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucIV); 11
TripleDES_ENC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1,

unsigned char *pucKey2, unsigned char *pucKey3); ... 11
TripleDES_DEC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1,

unsigned char *pucKey2, unsigned char *pucKey3); ... 12
TripleDES_ENC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char

*pucKey1, unsigned char *pucKey2, unsigned char *pucKey3, unsigned char *pucIV); 12
TripleDES_DEC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char

*pucKey1, unsigned char *pucKey2, unsigned char *pucKey3, unsigned char *pucIV); 12

Des_Key (des_ctx *(Key Structure), unsigned char *pucKey, short sMode);

This function is the key scheduler for the DES. This step must be performed before
calling the encrypt or decrypt function. Key must be in hex form. Function does not
convert ASCII text.

Inputs
• des_ctx *Ks -- Pointer to structure that will store the key schedule
• unsigned char *pucKey – Pointer to start of key array in need of scheduling
• short sMode -- Sets operation mode for the key scheduler

– sMode = EN0 : Mode is set to schedule key for encryption
– sMode = DE1: Mode is set to schedule key for decryption
– sMode = ENDE: Mode is set to schedule for both encryption and decryption

Des_Enc (des_ctx *(Key Structure),unsigned char *pucData, short sBlocks);

This function performs a DES encryption process on data. Key schedules must be
created before use. Data must be in hex form. Function does not convert ASCII text.

Inputs
• des_ctx *Ks -- Pointer to structure containing scheduled keys
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

www.ti.com Des_Dec — (ddes_ctx *(Key Structure), unsigned char *pucData, short sBlocks);

11SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Des_Dec (ddes_ctx *(Key Structure), unsigned char *pucData, short sBlocks);

This function performs a DES decryption process on data. Key schedules must be
created before use. Data must be in hex form. Function does not convert ASCII text.

Inputs
• des_ctx *Ks -- Pointer to structure containing scheduled keys
• unsigned char *pucData – Pointer to start of data array that will be deciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered

DES_ENC_CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char
*pucIV);

This function performs a DES encryption process with CBC mode. Key schedule must
be created before use. Data must be in hex form. Function does not convert ASCII text.
Updated IV vector is stored starting at location pucIV.

Inputs
• des_ctx *Ks -- Pointer to structure containing scheduled keys
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

DES_DEC_CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char
*pucIV);

This function performs a DES decryption process with CBC mode. Key schedule must
be created before use. Data must be in hex form. Function does not convert ASCII text.
Updated IV is stored starting at location pucIV.

Inputs
• des_ctx *Ks -- Pointer to structure containing scheduled keys.
• unsigned char *pucData – Pointer to start of data array that will be deciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

TripleDES_ENC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char
*pucKey1, unsigned char *pucKey2, unsigned char *pucKey3);

This function performs a 3DES encryption process in the form: Enc key3(Dec key2(Enc key1(
Data))). Data and keys must be in hex form. Function does not convert ASCII text.

Inputs
• des_ctx *Ks -- Pointer to structure that will store the key scheduler
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered
• unsigned char *pucKey1 – Pointer to the first key array location
• unsigned char *pucKey2 – Pointer to the second key array location
• unsigned char *pucKey3 – Pointer to the third key array location

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

TripleDES_DEC — (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1, unsigned
char *pucKey2, unsigned char *pucKey3); www.ti.com

12 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

TripleDES_DEC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char
*pucKey1, unsigned char *pucKey2, unsigned char *pucKey3);

This function performs a 3DES encryption process in the form:
Dec[key1](Enc[key2](Dec[key3](Data))). Data and keys must be in hex form. Function
does not convert ASCII text.

Inputs
• des_ctx *Ks -- Pointer to structure that will store the key scheduler.
• unsigned char *pucData – Pointer to start of data array that will be deciphered.
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered.
• unsigned char *pucKey1 – Pointer to the first key location.
• unsigned char *pucKey2 – Pointer to the second key location.
• unsigned char *pucKey3 – Pointer to the third key location.

TripleDES_ENC_CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned
char *pucKey1, unsigned char *pucKey2, unsigned char *pucKey3, unsigned char
*pucIV);

This function performs a 3DES encryption process in the form: Enc key3(Dec key2(Enc key1(
Data))) with CBC mode enabled. Data and keys must be in hex form. Function does
not convert ASCII text. Updated IV is stored starting at location pucIV.

Inputs
• des_ctx *Ks -- Pointer to structure that will store the key scheduler
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered
• unsigned char *pucKey1 – Pointer to the first key array location
• unsigned char *pucKey2 – Pointer to the second key array location
• unsigned char *pucKey3 – Pointer to the third key array location
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

TripleDES_DEC_CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned
char *pucKey1, unsigned char *pucKey2, unsigned char *pucKey3, unsigned char
*pucIV);

This function performs a 3DES encryption process in the form
Dec[key1](Enc[key2](Dec[key3](Data))) with CBC mode enabled. Data and keys must be
in hex form. Function does not convert ASCII text.

Inputs
• des_ctx *Ks -- Pointer to structure that will store the key scheduler
• unsigned char *pucData – Pointer to start of data array that will be deciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered
• unsigned char *pucKey1 – Pointer to the first key location
• unsigned char *pucKey2 – Pointer to the second key location
• unsigned char *pucKey3 – Pointer to the second key location
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

www.ti.com Overview of Library Functions

13SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

3.3 SHA-256 and SHA-224
The software implementation uses a 256-bit hash to hash, a hashing block of 512 bits as described in the
document FIBS PUB 180-3. Data to be hashed must be in hex form. Function does not convert ASCII text.
Message array must be a multiple of a hashing block with array elements being 32 bits in length. Function
is written in C99 notation for portability reasons.

Table 9. SHA-256 and SHA-224 Table of Contents
Title .. Page

SHA_256 —(uint32_t *Message, uint64_t Mbit_Length, uint32_t *Hash, short sMode);...................................... 13

SHA_256 (uint32_t *Message, uint64_t Mbit_Length, uint32_t *Hash, short sMode);

Inputs
• uint32_t *Message – Pointer to array of 32-bit longs to be hashed. Size of array must

be a multiple of a hashing block (512 bits or sixteen 32-bit longs).
• uint64_t Mbit_length -- 64-bit value containing the precise number of bits to be

hashed within the Message array.

NOTE: If Mbit_Length %(mod) 512 >= 448 bits, then an additional hashing block
is needed. You must allocate the additional 512 bits.

• uint32_t *Hash – Pointer to array of eight 32-bit longs. The final hash value is stored
here.

• short sMode – Determines if the algorithm run is SHA-224 or SHA-256.
– Mode is equal to "False", SHA-224 is used. Final Hash == Hash[0-6].
– Mode is equal to "True", SHA-256 is used. Final Hash == Hash[0-7].

4 Cryptographic Standard Definitions

4.1 AES
The Advanced Encryption Standard (AES) was announced by the National Institute of Standards and
Technology (NIST) in November 2001. It is the successor of Data Encryption Standard (DES), which
cannot be considered as safe any longer, because of its short key with a length of only 56 bits.

To determine which algorithm would follow DES, NIST called for different algorithm proposals in a sort of
competition. The best of all suggestions would become the new AES. In the final round of this competition
the algorithm Rijndael, named after its Belgian inventors Joan Daemen and Vincent Rijmen, won because
of its security, ease of implementation, and low memory requirements.

There are three different versions of AES. All of them have a block length of 128 bits, whereas, the key
length is allowed to be 128, 192, or 256 bits. In this application report, only a key length of 128 bits is
discussed.

4.1.1 Basic Concept of Algorithm
The AES algorithm consists of ten rounds of encryption, as can be seen in Figure 1. First the 128-bit key
is expanded into eleven so-called round keys, each of them 128 bits in size. Each round includes a
transformation using the corresponding cipher key to ensure the security of the encryption.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Cipher Key

128

128

Round 1

Round 2

Round 10

Cipher Text Block

Round Key 0

Round Key 1

Round Key 2

Round Key 10

K
e
y
 E

x
p

a
n

s
io

n

128

Plain Text Block

Cryptographic Standard Definitions www.ti.com

14 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Figure 1. AES Algorithm Structure

After an initial round, during which the first round key is XORed to the plain text (Add roundkey operation),
nine equally structured rounds follow. Each round consists of the following operations:
• Substitute bytes
• Shift rows
• Mix columns
• Add round key

The tenth round is similar to rounds one to nine, but the Mix columns step is omitted. In the following
sections, these four operations are explained.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

a
0

a
4

a
8

a
12

a
1

a
5

a
9

a
13

a
2

a
6

a
10

a
14

a
3

a
7

a
11

a
15

b
0

b
4

b
8

b
12

b
1

b
5

b
9

b
13

b
2

b
6

b
10

b
14

b
3

b
7

b
11

b
15

S-box
(table lookup)

a
5

b
5

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

The State The Key

www.ti.com Cryptographic Standard Definitions

15SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.1.2 Structure of Key and Input Data
Both the key and the input data (also referred to as the state) are structured in a 4x4 matrix of bytes.
Figure 2 shows how the 128-bit key and input data are distributed into the byte matrices.

Figure 2. Structure of the Key and the State

4.1.3 Substitute Bytes (Subbytes Operation)
The Subbytes operation is a nonlinear substitution. This is a major reason for the security of the AES.
There are different ways of interpreting the Subbytes operation. In this application report, it is sufficient to
consider the Subbytes step as a lookup in a table. With the help of this lookup table, the 16 bytes of the
state (the input data) are substituted by the corresponding values found in the table (see Figure 3).

Figure 3. Subbytes Operation

4.1.4 Shift Rows (Shiftrows Operation)
As implied by its name, the Shiftrows operation processes different rows. A simple rotate with a different
rotate width is performed. The second row of the 4x4 byte input data (the state) is shifted one byte
position to the left in the matrix, the third row is shifted two byte positions to the left, and the fourth row is
shifted three byte positions to the left. The first row is not changed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a13

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,1

a1,1

a2,1

a3,1

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b13

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

b0,1

b1,1

b2,1

b3,1

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

x

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a13

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a13

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0

a1,0

a2,0

a3,0

a0,0

a3,0

a2,0

a1,0

Cryptographic Standard Definitions www.ti.com

16 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Figure 4 illustrates the working of Shiftrows.

Figure 4. Shiftrows Operation

4.1.5 Mix Columns (Mixcolumns Operation)
Probably the most complex operation from a software implementation perspective is the Mixcolumns step.
The working method of Mixcolumns can be seen in Figure 5.

Figure 5. Mixcolumns Operation

Opposed to the Shiftrows operation, which works on rows in the 4x4 state matrix, the Mixcolumns
operation processes columns.

In principle, only a matrix multiplication needs to be executed. To make this operation reversible, the usual
addition and multiplication are not used. In AES, Galois field operations are used. This document does not
go into the mathematical details, it is only important to know that in a Galois field, an addition corresponds
to an XOR and a multiplication to a more complex equivalent.

The fact that there are many instances of 01 in the multiplication matrix of the Mixcolumns operation
makes this step easily computable.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

a
0

a
4

a
8

a
12

a
1

a
5

a
9

a
13

a
2

a
6

a
10

a
14

a
3

a
7

a
11

a
15 b

0
b

4
b

8
b

12

b
1

b
5

b
9

b
13

b
2

b
6

b
10

b
14

b
3

b
7

b
11

b
15

k
0

k
4

k
8

k
12

k
1

k
5

k
9

k
13

k
2

k
6

k
10

k
14

k
3

k
7

k
11

k
15

b
5

k
5

a
5

www.ti.com Cryptographic Standard Definitions

17SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.1.6 Add Round Key (Addroundkey Operation)
The Addroundkey operation is simple. The corresponding bytes of the input data and the expanded key
are XORed (see Figure 6).

Figure 6. Addroundkey Operation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k13

k2,0 k2,1
k2,2 k2,3

k3,0 k3,1
k3,2 k3,3

RK(n) RK(n+1)

k0,0

k1,0

k2,0

k3,0

k0,4

k1,4

k2,4

k3,4

k0,5

k1,5

k2,5

k3,5

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k13

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

k0,4

k1,0

k2,0

k3,0

t0,3

t1,3

t2,3

t3,3

t1,3

t2,3

t3,3

t0,3

RK(n) RK(n+1)

S-Box

S (k)ij

RC1

00

00

00

Rotate

t0,j

t1,j

t2,j

t3,j

k0,0

k1,0

k2,0

k3,0

k0,3

k1,3

k2,3

k3,3

Cryptographic Standard Definitions www.ti.com

18 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.1.7 Key Expansion (Keyexpansion Operation)
As previously mentioned, Keyexpansion refers to the process in which the 128 bits of the original key are
expanded into eleven 128-bit round keys.

To compute round key (n+1) from round key (n) these steps are performed:
1. Compute the new first column of the next round key as shown in Figure 7:

Figure 7. Expanding First Column of Next Round Key

First, all bytes of the old fourth column must be substituted using the Subbytes operation. These four
bytes are shifted vertically by one byte position and then XORed to the old first column. The result of
these operations is the new first column.

2. Calculate columns 2 to 4 of the new round key as shown:
a. [new second column] = [new first column] XOR [old second column]
b. [new third column] = [new second column] XOR [old third column]
c. [new fourth column] = [new third column] XOR [old fourth column]

Figure 8 illustrates the calculation of columns 2 to 4 of the new round key.

Figure 8. Expanding Other Columns of Next Round Key

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

www.ti.com Cryptographic Standard Definitions

19SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.2 DES and 3DES
The Data Encryption Standard (DES) was developed in the 1970s by IBM and adopted as a standard by
NIST by 1976. The DES algorithm itself has since then been declared insecure by NIST; however, it is
believed to be reasonably secure in the form of Triple DES.

The DES algorithm consists of 16 rounds of data manipulation preceded by an initial permutation and
followed by the inverse of the initial permutation. Figure 9 has a visual description of the algorithm
structure. After the initial permutation, the data block is split in half into left and right blocks. The right
block is sent through a function block with a round key and then is used as the left block for the next
round. The left block is XORed with the result of the function block, the result of which is used as the right
block in the next round. This is continued until the last round where the left and right blocks do not switch
sides. At this point, the data is put through the inverse of the initial permutation resulting in the wanted
cipher text.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

R 16L16

Output, 64 Bit

Inverse Initial Permutation

Initial Permutation

Input, 64 Bit

Left 32 Bits, Right 32 Bits,

F(x,k i)
K1

F(L0, k 1) = R 1R 0 = L 1

F(x,k i)
K2

LN R N

F(x,k i)
KN

R 15L15

K16
F(x,k i)

Cryptographic Standard Definitions www.ti.com

20 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.2.1 DES Algorithm Structure

Figure 9. DES Algorithm Structure

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Expansion Box

Half Block 32 Bits

6 Bits

4 Bits

Permutation Box

S2 S8S1 S3 S4 S5 S6 S7

48 Bits

Round

key
48 Bits

32 Bits

www.ti.com Cryptographic Standard Definitions

21SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.2.2 The Function Block
The function block begins by expanding a 32-bit half block to 48 bits as shown in Figure 10.

Figure 10. DES Function Block

The expanded block is then XORed with the round key. The resultant is the split into 6-bit increments and
passed through eight S-boxes, with the six MSb going through S1 and the six LSb through S8. The S-
boxes give 4-bit results which are concatenated (S1+S2+S3+S4+S5+S6+S7+S8) and sent through a 32-
bit permutation box.

4.2.3 Key Schedule
The key schedule for all sixteen rounds of the DES algorithm must be calculated before encryption or
decryption can occur. The key schedule process in this library is the most CPU intensive component of the
algorithm. System speed can be increased by limiting the number of keys to be scheduled. Figure 11
describes how the key schedule is calculated. First, the 64-bit key is sent through a permutation box that
reduces the bit count to 56. The result is split evenly and left rotated by 1-2 bits depending on the round.
The rotate results are fed into a second permutation box that gives the round key used in the DES
Function block.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

P2 Box

P2 Box

P2 Box

48 Bits

K 1

K N

K 16

56 Bits

64 Bit Key

P1 Box

Left Rotate, 16

Left Rotate, N

Left Rotate, 1

Left 28 Bits Right 28 Bits

Cryptographic Standard Definitions www.ti.com

22 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Figure 11. Key Schedule Function Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Key 3

Key 2

Key 1

3DES Decode

Cipher Text

Decode

Decode

Encode

Plain Text

3DES Encode

Plain Text

Key 1

Key 2

Key 3 Encode

Encode

Decode

Cipher Text

www.ti.com Cryptographic Standard Definitions

23SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.2.4 Triple DES
Triple DES is a more secure form DES that implements three keys with a series of encodes and decodes.
Figure 12 illustrates Triple DES Encoding and Decoding. In Triple DES, plain text is run through three
alternating rounds of DES encoding and decoding with each round using a different key.

Figure 12. 3DES Encoding and Decoding Algorithms

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Plain Text

Block 1

Plain Text

Block 2

DES

Encode

IV Block

Cipher Text

Block 1

DES

Encode

Cipher Text

Block 2

Plain Text

Block N

DES

Encode

Cipher Text

Block N

IV Block

Plain Text

Block 1

DES

Decode

IV Block

Cipher Text

Block 1

Plain Text

Block 2

DES

Decode

Cipher Text

Block 2

Plain Text

Block N

DES

Decode

Cipher Text

Block N

IV Block

Cryptographic Standard Definitions www.ti.com

24 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

4.2.5 Cipher Block Chaining (CBC) Mode
CBC is a common method to cipher multiple blocks of data. The mode introduces pseudo-randomness
between cipher blocks to obscure data patterns between plaintext blocks. Figure 13 describes DES CBC
modes for encryption and decryption.

Figure 13. DES Encode and Decode in CBC Mode

Encoding in CBC modes begins with an XOR of the IV block and the first Plain text box. The result is
encrypted to give the first block of Cipher text. This cipher text is then XORed with the next block of plaint
text, which is then encoded. This process repeats until all data blocks are enciphered. The IV block is then
updated to equal the last enciphered block.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

Message >= 448 bits “1” “00……00” 64 -bit Length

Message < 448 bits “1” “00……00” 64 -bit Length

512 - bit

512 - bit 512 - bit

www.ti.com Cryptographic Standard Definitions

25SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Decoding in CBC happens in a similar way. In decoding, however, the XOR step happens after the
decoding process. The first cipher text block is decoded then XORed with IV block to get the plain text.
Continuing blocks are XORed with the previous cipher block after decoding, and the last cipher block is
taken as the updated IV.

Triple DES with CBC works in the same way as DES with CBC. In Figure 13, replace the DES Encode
module with 3DES Encode and the DES Decode module with 3DES Decode to have a visualization of the
mode.

4.3 SHA-256 and SHA-224
Secure Hash Standard (SHA) 2 is a set of hashing algorithms developed by NIST to replace SHA-1. SHA-
2 is a family of algorithms with message digests of 224, 256, 384 and 512 bits. The 224 and 384 variants
are subsets of the 256 and 512, respectively. This library only implements SHA-256 and SHA-224.

4.3.1 Message Padding and Parsing
In order for a hash to be computed, the message must be padded to a multiple of a 512-bit hashing block.
The last 64-bits of the last block is reserved for the bit count of the message. Figure 14 shows how
padding is implemented. At the end of the message to be hashed a single "1" bit is appended followed by
zeros. The zeroes continue until Message + Message Length + "1" + "00…00" = 512 bits.

Figure 14. Example of Message Padding

4.3.2 SHA-256 Algorithm
The algorithm starts with an initialization vector of eight 32-bit words. These values are loaded into temp
variables labeled A – H. A set of equations govern how these variables are combined and manipulated.
The algorithm also calls for an array of hash constants (Kt), a message schedule (Wt), and the functions
Ch, Ma, ∑0, and ∑1. The equations and functions are given in Section 4.3.3. Figure 15 gives a
visualization of the hashing loop. This loop is repeated 64 times until the end of the message schedule.
One message schedule covers only one hashing block of the full message. Once the loop is completed,
the resulting temp variables are XORed with the initialization variables to form the current message digest
H0-7. If other message blocks are to be processed, the temp values are loaded with the current message
digest. At the end of the loop, the current results are XORed with the previous message digest. A full
explanation of the algorithm can be found in FIPS PUB 180-3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

! = Bitwise XOR

& = Bitwise AND

A’ = Bitwise Compliment of A

>> = Shift Right

>>> = Rotate Right

B HGFEDCA

B HGFEDCA

∑

∑

W t

Kt

Ch

Ma

1

0

Cryptographic Standard Definitions www.ti.com

26 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Figure 15. Visualization of the Hashing Loop of SHA-256

4.3.3 Equations Found in SHA-256 Algorithm
Symbols in Equations:

(1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

()

() ()

(, ,)1 1

, ,2 0

h g

g

e

e d T1

d c

c b

b a

a T T1 2

= Å Å Å å Å ¦

= Åå

=

= ¦

¦ =

= Å

=

=

=

= Å

T h K W E Ch e g t t

T Ma a b c A

() () ()
() () () ()
() () () ()
() () () ()
() () () ()
() () () ()

)

0

1

0

1

t

(

ch x,y,z x & y x '& z

Ma x,y,z x & y x & z y & z

x x 7 A 18 x 3

x x 17 A 19 x 10

A A 2 A 13 A 22

E E 6 A 11 A

0

5

,

2

W
 t£

=

= Å

= Å Å

s = >>> Å >>> Å >>

s = >>> Å >>> Å >>

å = >>> Å >>> Å >>>

å = >>> Å >>> Å >>>

=
i

t
t

M
W

() ()0 2 7 1 15 16

15

, 16 15 t - - - -

ì £ï
í

Å Å Å £ £ïî t t t tσ W W σ W W

www.ti.com Cryptographic Standard Definitions

27SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

Functions:
ch(x,y,z) = (x & y) ⊕ (x' & z)

Ma (x, y, z) = (x & y) ⊕ (x & z) ⊕ (y & z)

σ0(x)

(2)

Loop Equations:

(3)

4.3.4 SHA-224
SHA-224 is a subset of SHA-256 with a message digest of 224-bits. The algorithm is the same with the
exception of different Hash initialization values. Also, only the first seven 32-bit words (224 bits) of the final
message digest are used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

References www.ti.com

28 SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

C Implementation of Cryptographic Algorithms

5 References
• Announcing the Advanced Encryption Standard (FIPS PUB 197)
• Data Encryption Standard (DES) (FIPS PUB 46-3)
• Security Hash Standard (SHS) (FIPS PUB 180-3)
• AES128 – A C Implementation for Encryption and Decryption
• DES Modes of Operation (FIPS PUB 81)
• Schneier, Bruce; Applied Cryptography; John Wiley & Sons; 1996

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B
http://www.ti.com/lit/pdf/SLAA397

www.ti.com Revision History

29SLAA547B–July 2013–Revised March 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from July 13, 2013 to March 5, 2018 .. Page

• Updated links to project collateral in abstract ... 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547B

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	C Implementation of Cryptographic Algorithms
	1 Software Benchmarks
	1.1 AES Benchmarks
	1.2 DES Benchmarks
	1.3 SHA-2 Benchmarks

	2 Using Library Functions
	2.1 AES 128
	2.1.1 Encrypting With AES 128
	2.1.2 Decrypting With AES 128

	2.2 DES
	2.2.1 Setting the Key Schedule for DES
	2.2.2 Encrypting and Decryption With DES
	2.2.3 Encryption and Decryption With DES CBC Mode

	2.3 3DES
	2.3.1 Encrypting and Decrypting With Triple DES

	2.4 SHA-2
	2.4.1 Hashing With SHA-256
	2.4.2 Hashing With SHA-224

	3 Overview of Library Functions
	3.1 AES 128
	3.2 DES and 3DES
	3.3 SHA-256 and SHA-224

	4 Cryptographic Standard Definitions
	4.1 AES
	4.1.1 Basic Concept of Algorithm
	4.1.2 Structure of Key and Input Data
	4.1.3 Substitute Bytes (Subbytes Operation)
	4.1.4 Shift Rows (Shiftrows Operation)
	4.1.5 Mix Columns (Mixcolumns Operation)
	4.1.6 Add Round Key (Addroundkey Operation)
	4.1.7 Key Expansion (Keyexpansion Operation)

	4.2 DES and 3DES
	4.2.1 DES Algorithm Structure
	4.2.2 The Function Block
	4.2.3 Key Schedule
	4.2.4 Triple DES
	4.2.5 Cipher Block Chaining (CBC) Mode

	4.3 SHA-256 and SHA-224
	4.3.1 Message Padding and Parsing
	4.3.2 SHA-256 Algorithm
	4.3.3 Equations Found in SHA-256 Algorithm
	4.3.4 SHA-224

	5 References

	Revision History
	Important Notice

