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Biometric Steering Wheel Reference Design 
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ABSTRACT 

This reference design is a proof of concept demonstration of how biometric sensors in a steering 
wheel can be used to obtain a driver’s vital information in real time.  By combining the high 
performance AFE4400 and AFE4300 front-end ICs with the low-power processing capability of 
the MSP430 MCU and the wireless CC2541 BLE module, it is possible to measure pulse rate, 
respiration rate, and ECG-based heart rate from a standalone system.  This reference design 
demonstrates this application with full hardware and software collateral.  For evaluation, all three 
key biometric measurements may be sent over a BLE wireless interface to the TI HealthHUB 
application running on an iPad. 

Document History 
Version Date Author Notes 

1.0 June 2012 Amy Ball First release 

    

 
 

  



TIDA-00292 

2  

Contents 
1 Design Summary .......................................................................................................................... 4 

1.1 Goal 4 
1.2 Top Level Architecture ............................................................................................................ 4 

2 Background .................................................................................................................................. 4 
2.1 Background on HR Measurements ......................................................................................... 5 
2.2 Background on ECG Measurements ...................................................................................... 6 
2.3 Background on Respiration Measurements ............................................................................ 7 

3 Circuit Description ....................................................................................................................... 7 
3.1 Circuit Description for HRM .................................................................................................... 7 
3.2 Circuit Description for ECG ..................................................................................................... 9 
3.3 Circuit Description for Respiration........................................................................................... 9 

4 Hardware Overview .................................................................................................................... 10 
4.1 Hardware Overview for HR Measurements ........................................................................... 10 

4.1.1 LED Transmit Section ............................................................................................... 11 
4.1.2 Receiver Stage 1: I-V Amplifier (TransImpedance Amplifier) and Ambient Cancellation12 
4.1.3 Receiver Stage 2: Filter and Analog to Digital Converter ........................................... 14 
4.1.4 Diagnostics ............................................................................................................... 14 

4.2 Hardware Overview ECG Measurements ............................................................................. 15 
4.2.1 Overview and Gain Calculation ................................................................................. 15 
4.2.2 Input Common Mode Range ..................................................................................... 16 
4.2.3 Input Differential Dynamic Range .............................................................................. 17 

4.3 Hardware Overview for Respiration Measurements .............................................................. 17 
4.3.1 Overview of Pneumography ...................................................................................... 17 
4.3.2 AC Rectification ........................................................................................................ 18 
4.3.3 Amplitude Modulation/Demodulation ......................................................................... 20 

5 Supporting Hardware ................................................................................................................. 20 
5.1 Microcontroller ...................................................................................................................... 20 
5.2 Motion Sensors ..................................................................................................................... 20 
5.3 Communication Link ............................................................................................................. 20 
5.4 Battery Charger and Fuel Gauge .......................................................................................... 21 

6 Verification and Measured Performance .................................................................................. 21 
6.1 HealthHUD Demonstration Suite .......................................................................................... 21 
6.2 HealthHUD App .................................................................................................................... 21 
6.3 Demonstration Usage ........................................................................................................... 22 

6.3.1 Scale and Common Operations ................................................................................ 22 
6.3.2 Find Devices ............................................................................................................. 22 
6.3.3 Connection ................................................................................................................ 23 

6.4 Measured Results ................................................................................................................. 23 
Appendix A. Design Resources ........................................................................................................ 24 
Appendix B. Acronyms ...................................................................................................................... 25 
Appendix C. References .................................................................................................................... 26 

Figures 
Figure 1: Top Level Architecture ........................................................................................................ 4 
Figure 2: (a) Basic PPG technique; (b) Sample PPG waveform ........................................................ 5 
Figure 3: Normal ECG Representation [1] ........................................................................................... 6 
Figure 4: HRM Block ............................................................................................................................ 8 
Figure 5: ECG and Respiration Block ............................................................................................... 10 



   TIDA-00292  

  3 

Figure 6: Commercially available AFEs like TI’s AFE4400 integrate the LED driver circuitry and 
the photodiode signal conditioning circuitry in a single package ............................. 11 

Figure 7: LED Transmit Section ........................................................................................................ 12 
Figure 8: Receiver Section – Stage 1 ................................................................................................ 12 
Figure 9: Receiver Section – Stage 2 ................................................................................................ 14 
Figure 10: High Pass Filter ................................................................................................................ 15 
Figure 11: Weight-Scale Front-End ................................................................................................... 16 
Figure 12: Bio-impedance Measurement Model using Four Electrodes ........................................ 17 
Figure 13: Body Composition Signal Chain in AC Rectifier Mode.................................................. 18 

 

Tables 
Document History ................................................................................................................................ 1 
 
  



TIDA-00292 

4  

1 Design Summary 
TI Reference Designs are mixed-signal solutions created by TI’s experts. Verified designs offer 
the theory, complete PCB schematic & layout, bill of materials and measured performance of the 
overall system.  

1.1 Goal 

This design takes a block level approach for designing a biometric steering wheel. The goal of 
this design is to provide a concept demonstration of how a driver’s pulse rate, respiration and 
ECG-based heart rate can be obtained from electronics embedded within a steering wheel. 

1.2 Top Level Architecture 

The block diagram shown in Figure 1 gives a top level architectural overview of the components 
in the reference design. 

 
Figure 1: Top Level Architecture 

2 Background 
This section provides an overview of the theory of operation of heart rate (HR), 
electrocardiogram (ECG) and respiration rate measurements. 
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2.1 Background on HR Measurements 

To facilitate plethysmography measurement, three sensing mechanisms are commonly used: 
volume displacement plethysmography, impedance plethysmography, and 
photoplethysmography. The photoplethysmography (PPG) is preferred for this design because 
the measurement can be performed on the palm without precise positioning. Additionally, the 
design can easily be upgraded to provide a blood oxygen saturation measurement. 

Photoplethysmography (PPG) is based on plethysmography and photovoltaic technique, as 
displayed in Figure 2 (a). 

 
Figure 2: (a) Basic PPG technique; (b) Sample PPG waveform 

When blood pumps to the periphery (ejection phase), blood vessels expand due to the blood 
pressure from the heart and a pulse will be generated. When the blood flows back (diastolic 
filling phase), another pulse follows. The PPG signal is the superposition of the pumping pulse 
and the reflected wave, as shown in Figure 2(b). 

By implementing a suitable algorithm, it is possible to extract the heart beat information from the 
PPG signal. 
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2.2 Background on ECG Measurements 

Electrocardiography is the recording of the electrical activity of the heart. Traditionally this is in 
the form of a transthoracic (across the thorax or chest) interpretation of the electrical activity of 
the heart over a period of time, as detected by electrodes attached to the surface of the skin and 
recorded or displayed by a device external to the body. The recording produced by this 
noninvasive procedure is called and electrocardiogram (ECG). An electrocardiogram picks up 
electrical impulses generated by the polarization and depolarization of cardiac tissue and 
translates into a waveform. The waveform is then used to measure the rate and regularity of 
heartbeats, as well as the size and position of the chambers, the presence of any damage to the 
heart, and the effects of drugs or devices used to regulate the heart, such as a pacemaker. At 
rest, each heart muscle cell has a negative charge, called the membrane potential, across its 
cell membrane. Decreasing this negative charge toward zero, via the influx of the positive 
cations, Na+ and Ca++, is called depolarization, which activates the mechanisms in the cell that 
cause it to contract. [2] 

 

 
Figure 3: Normal ECG Representation [1] 

A typical ECG waveform showing the cardiac cycle (heartbeat) is composed of a P wave, a QRS 
complex, a T wave, and a U wave, which is normally invisible in 50 to 75% of ECGs because it is 
hidden by the T wave and upcoming new P wave. The baseline of the electrocardiogram (the flat 
horizontal segments) is measured as the section of the tracing that follows the T wave and 
preceding the next P wave and the segment between the P wave and the following QRS 
complex (PR segment). The ST segment typically remains close to the isoelectric line since this 
is the period when the ventricles are fully depolarized and therefore no currents can be in the 
ECG leads. Since most ECG recordings do not indicate where the 0 mV line is, baseline 
depression often gives the appearance of an elevation of the ST segment and conversely 
baseline elevation gives the appearance of depression of the ST segment. [2] 
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2.3 Background on Respiration Measurements 

Respiration rate is the rate of ventilation, which is the number of breaths (inhale-exhale cycles) 
taken within a certain amount of time (usually 60 seconds). Respiration rate varies with age, 
health, physical activity, etc. Adults have a typical respiration rate of 12-15 breaths per minute. 
Many factors can affect the results. For this reason, understanding how to take an accurate 
measurement is crucial. Every time we take a breath is a sign of how often the brain is 
communicating to the body to breathe. If the oxygen level in the blood is low or if the carbon 
dioxide level in the blood is high, our body is instructed to breathe more often. [4] 

3 Circuit Description 
This section describes each of the three circuits used to obtain each of the three measurements.  

3.1 Circuit Description for HRM 

The Heart Rate Monitor (HRM) is an electronic device that detects physiological parameters and 
converts them into a heart rate measurement. Heart rate is the number of times the heart beats 
in one minute. A heart beat is produced via depolarization at the sinoatrial and atrioventricular 
nodes in the heart. A basic HRM is comprised of a sensing probe attached to a patient's earlobe, 
toe, finger or other body locations, depending upon the sensing method (reflection or 
transmission), the data acquisition system for the calculation, and eventually the display of the 
heart rate. 

This reference design discusses the methodology for achieving a low power, portable, low-end 
reflectance mode palm based HRM in a steering wheel.  

The design employs reflectance mode photoplethysmography (PPG) to extract the pulse signal 
from the palm, which is equivalent to the heart beat. It also utilizes other components to analyze 
and send the data. 
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Figure 4: HRM Block 

High performance is achieved by using the AFE4400, a fully integrated analog front end that 
consists of a low noise receiver channel with an integrated analog to digital converter, an LED 
transmit section, sensor diagnostics and LED fault detection. Additional components include: 

• Ultra-low power microcontroller (MCU) for calculating the heart rate  

• Wireless module based on Bluetooth Low Energy (BLE) for exchanging information with 
smart phones, tablets or PCs 

• Motion sensor for monitoring the user’s activity 

• Reflectance mode sensing probe 

• Ferroelectric RAM (FRAM) for data logging 

• Lithium-polymer rechargeable battery 

• Battery charger 

• Battery fuel gauge 

 

Palm Based HRM 
on Biometric 
Steering Wheel 



   TIDA-00292  

  9 

3.2 Circuit Description for ECG 

The electrocardiogram (ECG) machine is an electronic device that records the heart's electrical 
activity. With each heartbeat, an electrical signal spreads from the top of the heart to the bottom. 
As it travels, the signal causes the heart to contract and pump blood. The process repeats with 
each new heartbeat. A basic ECG system consists of electrodes that will connect to a patient, a 
data acquisition system, and a processor for the calculation and eventual display of the ECG 
waveform. 

This reference design discusses the methodology for achieving a low power, portable, ECG 
system in a steering wheel. The design employs an analog filter along with an AFE to extract the 
ECG signal from the left and right hand. 

High performance is achieved by using the weight-scale (WS) signal chain of the AFE4300, a 
fully integrated analog front end that consists of an integrated 16-bit, 860-SPS analog-to-digital 
converter (ADC) that is multiplexed between both chains. Additional components include an 
ultra-low power microcontroller (MCU) for calculating the ECG and a wireless module based on 
Bluetooth Low Energy (BLE) for exchanging information with smart phones, tablets or PCs. 

3.3 Circuit Description for Respiration 

Respiration rate is defined as the number of breaths a person takes per minute. The rate is 
usually measured by counting how many times the chest rises. This reference design discusses 
the methodology for achieving a low power, portable, respiration system in a steering wheel. The 
design employs an analog filter along with an AFE to extract the respiration rate and signal from 
the left and right hand. 

High performance is achieved by using the body composition (BCM) signal chain of the 
AFE4300. Additional components are an ultra-low power microcontroller (MCU) for calculating 
the respiration rate and a wireless module based on Bluetooth Low Energy (BLE) for exchanging 
information with smart phones, tablets or PCs. 
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Figure 5: ECG and Respiration Block 

4 Hardware Overview 
This section goes through the signal chain of each TI AFE and where the specific measurement 
is taken. It will also describe useful information about the functionality of the device. 

4.1 Hardware Overview for HR Measurements 

The key components required for acquiring and signal-conditioning the PPG signals are the 
LED, the photodetector and the AFE.  

Some commercially available AFEs, like TI’s AFE4400, integrate both the LED driver circuitry 
and the photodiode signal conditioning circuitry in a single package, as shown in Figure 6. This 
new generation of AFEs can drive the LED currents with an H-bridge configuration capable of 
driving up to 150 mA/leg, with short-circuit protection. They can also increase the dynamic range 
greater than 105 dB and create a current reference independent of the IR and red LEDs. 

Electrodes on Biometric 
Steering Wheel used for 
ECG and Respiration 



   TIDA-00292  

  11 

 
Figure 6: Commercially available AFEs like TI’s AFE4400 integrate the LED driver circuitry and 

the photodiode signal conditioning circuitry in a single package 

The photodiode circuitry embedded into these devices can amplify currents below 1 µA with 13 
bits of resolution. It is ultra-low-power (<4 mW) and has a programmable TIA. The AFE 
consumes less than 3 mA of current when active. 

4.1.1 LED Transmit Section 

As highlighted in Figure 7, the transmit stage contains two sections: the LED driver and LED 
current control section.  

a) LED Driver - There are two LEDs, one for the visible red wavelength and another for the 
infrared wave length. To turn them on, an H-Bridge circuit is used. The LED1_ON and 
LED2_ON signal decide which LED to turn on (the whole circuit is time multiplexed). 
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b) LED Current Control – The current source (I_LED) locally regulates and ensures that 
the actual LED current tracks the specified reference. The LED1 and LED2 reference 
current can be independently set by Register. The 8-bit current resolution here meets a 
dynamic range of better than 105dB (based on a 1-sigma LED current noise).  

c) A Push-Pull LED driver is also supported; please refer to AFE4400 Datasheet for detail. 

 
Figure 7: LED Transmit Section 

4.1.2 Receiver Stage 1: I-V Amplifier (TransImpedance Amplifier) and Ambient 
Cancellation 

 
Figure 8: Receiver Section – Stage 1 
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The RX Stage consists of a differential current-to–voltage transimpedance amplifier that 
converts the input photodiode current into an appropriated voltage, as shown in Figure 8. The 
feedback resistor of the amplifier (Rf) is programmable to support a wide range of photodiodes 
currents. (Available values in AFE4400: 1MΩ, 500kΩ, 250kΩ, 100kΩ, 50kΩ, 25kΩ, and 10kΩ) 

 

The differential voltage at the TIA output includes the pleth component (the desired signal) and a 
component resulting from the ambient light leakage: 

VTIAOUT = 2 ∗ (IPLETH + IAMB) ∗  Rf 

Equation 1 

The feedback resistor Rf and feedback capacitor Cf form a low-pass filter for the input signal 
current. Always ensure that the low-pass filter has sufficiently high bandwidth (as shown by 
Equation 2) because the input current consists of pulses. For this reason, the feedback capacitor 
is also programmable. (Available value include: 5pF, 10pF, 25pF, 50pF, 100pF and 250pF. Any 
combination of these capacitors can also be used) 

The TIA is followed by the second stage, which consists of a current digital-to-analog converter 
(DAC) that sources the cancellation current and an amplifier that gains up the pleth component 
alone. The current DAC (ICANCEL) has a cancellation current range of 10 µA with 10 steps (1 µA 
each). The amplifier has five programmable gain settings (Rg/Ri): 1, 1.414, 2, 2.828 and 4.  

The receiver provides digital samples corresponding to ambient duration. The host processor 
can use these ambient values to estimate the amount of ambient light leakage. The processor 
must then set the value of the ambient cancellation DAC. Using the set value, the ambient 
cancellation stage subtracts the ambient component and gains up only the pleth component of 
the received signal. 

The differential output of the second stage is   VDIFF: 

𝑉𝐷𝐼𝐹𝐹 = 2 ∗ �𝐼𝑃𝐿𝐸𝑇𝐻 ∗
𝑅𝑓
𝑅𝑖

+ 𝐼𝐴𝑀𝐵 ∗
𝑅𝑓
𝑅𝑖
− 𝐼𝐶𝐴𝑁𝐶𝐸𝐿� ∗ 𝑅𝑔 

Equation 2 

Where： 

 Ri = 100kΩ, 

IPLETH = photodiode current pleth component, 

IAMB = photodiode current ambient component, and 

ICANCEL = the cancellation current DAC value (as estimated by the host processor). 
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4.1.3 Receiver Stage 2: Filter and Analog to Digital Converter 

 
Figure 9: Receiver Section – Stage 2 

The output of the ambient cancellation amplifier is separated into LED2 and LED1 channels.  

1) When LED2 is on, the amplifier output is filtered and sampled on capacitor   C_LED2, 

2) When LED1 is on, the amplifier output is filtered and sampled on capacitor   C_LED1, 

3) In between the LED2 and LED1 pulses, the idle amplifier output is sampled to estimate 
the ambient signal on capacitors C_(LED2_AMB)  and   C_(LED1_AMB). 

The sampling duration is termed the Rx sample time and is programmable for each signal, 
independently. The sampling can start after the I-V amplifier output is stable (to account for LED 
and cable settling times). The Rx sample time is used for all dynamic range calculations; the 
minimum time supported is 50µs. 

A single, 22-bit ADC converts the sampled LED2, LED1, and ambient signals sequentially. Each 
conversion takes 25% of the pulse repetition period and provides a single digital code at the 
ADC output. Note that four data streams are available at the ADC output (LED2, LED1, ambient 
LED2, and ambient LED1) at the same rate as the pulse repetition frequency. The ADC is 
followed by a digital ambient subtraction block that additionally outputs the (LED2–
ambientLED2) and (LED1–ambient LED1) data values. 

 

4.1.4 Diagnostics 

The device includes diagnostics to detect open or short conditions of the LED and photo sensor, 
LED current profile feedback, and cable on or off detection. By default, the diagnostic function 
takes tDIAG = 8 ms to complete after the DIAG_EN register bit is enabled. The diagnostics 
module, when enabled, checks for nine types of faults sequentially. 
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4.2 Hardware Overview ECG Measurements 

Both the respiration and ECG measurements are taken with the AFE4300, which has 2 separate 
signal chains (BCM and WS). The weight-scale signal chain was used to take the ECG 
measurement so that will be discussed first. . The weigh scale signal chain supports 4 channels. 
The ECG electrodes were connected to one of the channels. Since the weigh scale 
measurements are DC measurements, generally anti-aliasing filters are added before the front 
end to remove any high frequency interference signals. For the ECG application, we replaced 
the anti-aliasing filter with a high pass filter. The high-pass filter is shown in Figure 10. 

 

 
  Figure 10: High Pass Filter  

 

 

4.2.1 Overview and Gain Calculation 

The weight-scale front-end (Figure 11) has two stages of gain, with an offset correction DAC in 
the second gain stage. The reason for using INA and PGA is to fit different input voltages from 
the sensor bridge. Though not shown in the diagram (but shown in the design files), an anti-
aliasing network is required in front of the INA to filter out electromagnetic interference (EMI) 
signals or any other anticipated interference signals. There is a high pass filter on the input as 
previously described (Figure 10), but there is also a low pass filter on the input creating a band-
pass filter. For this reference example a band-pass filter is used with a pass band of 12.5Hz-
530Hz. 
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Figure 11: Weight-Scale Front-End 

An internal reference source provides a constant voltage of 1.7V at the VLDO output to bias the 
two resistor networks in the high pass filter. The good CMRR specification of the INA will reject 
the common-mode DC voltage at the high-pass filter output and amplify the differential signal 
voltage, the difference in the voltage between the two lines only. The high input impedance and 
low bias current of the INA will reduce the error caused by measurement circuit. The first stage 
gain (A1) is set by the external resistor (𝑹𝑮) and the 100kΩ internal feedback resistors (RFB1): 

𝑨𝟏 = 𝟏 + 𝟐 ∗
𝟏𝟎𝟎𝒌
𝑹𝑮

 

Equation 3 

The second-stage gain (A2) is controlled by feedback resistor RFB2, which have four possible 
values: 80kΩ, 160kΩ, 240kΩ, and 320kΩ. Because the gain is𝑹𝑭/𝟖𝟎𝒌Ω, the gain setting can be 
1, 2, 3, or 4. 

 

4.2.2 Input Common Mode Range 

The usable input common mode range of the weight-scale front-end depends on the various 
parameters, including the maximum differential input signal, supply voltage, and gain. The output 
of the first-stage amplifier must be within 250mV of the power supply rails for linear operation. 
The allowed common-mode range is determined by Equation 4: 

𝐴𝑉𝐷𝐷 − 0.25 −
𝐺𝐴𝐼𝑁 ∗ 𝑉𝑀𝐴𝑋 𝐷𝐼𝐹𝐹

2
> 𝐶𝑀 > 𝐴𝑉𝑆𝑆 + 0.25 +

𝐺𝐴𝐼𝑁 ∗ 𝑉𝑀𝐴𝑋 𝐷𝐼𝐹𝐹

2
 

Equation 4 

Where: 

• 𝑽𝑴𝑨𝑿 𝑫𝑰𝑭𝑭 = maximum differential input signal at the input of the first gain stage, 
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• 𝑪𝑴 = Common-mode range. 

4.2.3 Input Differential Dynamic Range 

The max differential (INP – INN) signal depends on the analog supply, reference used in the 
system. This range is shown in Equation 5. 

𝑀𝐴𝑋(𝐼𝑁𝑃 − 𝐼𝑁𝑁) <  
𝑉𝑅𝐸𝐹
𝐺𝐴𝐼𝑁

;𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝑅𝑎𝑛𝑔𝑒 = 2 ∗
𝑉𝑅𝐸𝐹
𝐺𝐴𝐼𝑁

 

Equation 5 

The gain shown in Equation 5 is the product of the gains of the INA and the second-stage gain. 
The full-scale input from the bridge signal typically consists of a differential DC offset from the 
load cell plus the actual weight signal. This will not be the case since the bridge was replaced 
with the high pass filter for this reference design. Having a high gain in the first stage helps 
minimize the effect of the noise that is added from the subsequent stages. However, make sure 
to choose a gain that does not saturate the first stage with the full-scale signal. Also, the 
common-mode of the signal must fall within the range as shown in Equation 4.  

 

4.3 Hardware Overview for Respiration Measurements 

The AFE4300 provides two options for body impedance measurement: AC rectification and I/Q 
demodulation. Both options work by injecting a sinusoidal current into the body and measuring 
the voltage across the body. The portion of the circuit injecting the current into the body is the 
same for each of these two options. The difference lies in how the measured voltage across the 
impedance is processed to obtain the final result. This reference design uses AC rectification to 
capture the respiration rate waveform based on the principle of impedance pneumography. 

4.3.1 Overview of Pneumography 

Pneumograph is a device for recording the velocity and force of chest movements during 
respiration. Impedance pneumography is a commonly used technique to monitor a person’s 
respiration rate. The design has implemented this technique using four electrodes, but instead of 
monitoring on the chest, it is monitored on the palms of each hand. 

 
Figure 12: Bio-impedance Measurement Model using Four Electrodes 
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This method works by injecting a sinusoidal AC current into the tissue through the drive 
electrodes. The AC current creates a potential difference across any two points between the 
drive electrodes. This potential difference is related to the resistance of the tissue between the 
sense electrodes. The equivalent resistance is defined as the ratios of the voltage difference 
between the two receive (sense) electrodes and the current that flows through the tissue. There 
is a good correlation between the impedance change and the volume of respirated air and this 
relationship is approximately linear. The varied impedance generates a varying voltage 
component when current is injected. This varying voltage component is the parameter of interest 
since this component is then used to determine the respiration rate of the subject. [4] 

 

4.3.2 AC Rectification 

 
Figure 13: Body Composition Signal Chain in AC Rectifier Mode 



   TIDA-00292  

  19 

Figure 13 shows the portion of the AFE4300 devoted to body composition measurement (which 
is used to get respiration) in the RMS detector mode. The top portion of Figure 14 represents the 
current-injection circuit. A direct digital synthesizer (DDS) generates a sinusoidal digital pattern 
with a frequency obtained by dividing a 1-MHz clock with a 10-bit counter. The digital pattern 
drives a 6-bit, 1-MSPS DAC. The output of the DAC is filtered by a 150-kHz, second-order filter 
to remove the images, followed by a series external capacitor to block the DC current and avoid 
any DC current injection into the body. The output of the filter (after the DC blocking capacitor) 
drives a resistor setting amplitude of the current to be injected into the body, as shown in 
Equation 6: 

𝐼(𝑡) =
𝑉𝐷𝐴𝐶
𝑅1

= 𝐴 sin (𝑤0𝑡) 

Equation 6 

The tolerance of the resistor is +/-2-%; therefore, the resistor and the DAC amplitude are set so 
that the current injected is 375µArms when all the elements are nominal. With a 20% error, the 
source is 450µArms, and still below the 500µArms limit. 

Current flows into the body through an output analog multiplexer (mux) that allows the selection 
of up to six different contact points on the body. The current crosses the body impedance and a 
second mux selects the return path (contact) on the body, closing the loop to the output of the 
amplifier. 

At the same time that current is injected, a second set of multiplexers connects a differential 
amplifier across the same body impedance in order to measure the voltage drop created by the 
injected current, shown by Equation 7: 

𝑣(𝑡) = 𝐴|𝑍|sin (𝜔0𝑡 + 𝜃) 

Equation 7 

Where Z and θ are the module and phase of the impedance at𝝎𝟎, respectively. 

The output of the amplifier is routed to a pair of switches that implement the demodulation at the 
same frequency as the excitation current source in order to drive the control of those switches. 
This circuit performs a full-wave rectification of the differential amplifier output and a low-pass 
filter at its output, recovers the DC level, and finally routes it to the same 16-bit digitizer used in 
the weight-scale chain. 

𝐷𝐶 −
2
𝑇
� 𝐴|𝑍| sin(𝜔0𝑡 + 𝜃)𝑑𝑡 −

2𝐴|𝑍|
𝜋𝑇

2�
 

Equation 8 

Ultimately, the DC output is proportional to the module of the impedance. 
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4.3.3 Amplitude Modulation/Demodulation 

As previously explained, impedance pneumography requires injecting current into the body. The 
IEC standard allows injecting up to 100µA of current at 10 kHz. As the frequency deceases, the 
current that can be injected into the body will also decrease and vice-versa. While holding the 
steering wheel a high-frequency AC signal is injected into the body. This reference design 
does not have all of the patient protection circuitry onboard and was not IEC tested. This 
reference design is not for diagnostic use and is not for use with a defibrillator. The AC 
signal then acts as a carrier that is amplitude-modulated by the low-frequency signal that was 
generated as a result of the subject’s breathing action. On the receiver side, this modulated 
signal must be demodulated in order to extract the breathing signal desired. Figure 13 shows a 
block diagram of the BCM signal chain of the AFE4300. 

5 Supporting Hardware 
This section describes the other supporting hardware that was also included in this design. 

5.1 Microcontroller 

In this design example, the microcontroller is used to calculate the heart rate, pulse rate, and 
respiration rate, merge the motion sensor data, do some digital filtering to remove unwanted 
noise, and process the AFE information. The microcontroller should have specific features 
including the ability to maintain the context at all times. It should also have a limited power 
budget because it will be continuously running and the batteries will drain rapidly otherwise. 

5.2 Motion Sensors 

Sensors are a fundamental part of the human machine interface (HMI). They help the system 
identify the context and environmental conditions. Motion sensors such as accelerometers, 
gyroscopes, and magnetometers help identify whether a person is seated, walking, or running. 
They are key elements to identify the orientation of the arm, wrist, or other specific part of the 
body where the activity monitor is located.  

They also help to track the travel distances and provide a more accurate position of the system 
by increasing the resolution of the GPS with dead-reckoning algorithms. 

The accelerometer used in this design was the MPU-9150. For more information on this device 
visit the following link:  http://www.invensense.com/mems/gyro/mpu9150.html.  

5.3 Communication Link 

The system described in this article has both wireless and wired communication links. The 
wireless communication link is based on BLE and is based on the BR-LE4.0-S2A, an FCC-
certified (Federal Communications Commission) system-in-PCB (printed-circuit board) module 
available online (http://www.blueradios.com/orderinfo_new.htm) that only requires a few external 
components. 

This module works with AT-based commands and is easy to use since it includes a network 
processor that handles all the transactions required by the Bluetooth 4.0 stack. The wired 
communication is based on USB 2.0. The microcontroller’s built-in module requires only a few 
external components. USB is also used for charging the lithium-polymer battery. 

http://www.invensense.com/mems/gyro/mpu9150.html
http://www.blueradios.com/orderinfo_new.htm
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5.4 Battery Charger and Fuel Gauge 

The battery charger operates from either a USB port or ac adapter and supports charge currents 
up to 1.5 A. The input voltage range with input overvoltage protection supports unregulated 
adapters. The USB input current limit accuracy and startup sequence allow the battery charger 
to meet the USB-IF inrush current specification. Additionally, the input dynamic power 
management prevents the charger from crashing incorrectly configured USB sources. The 
battery fuel gauge circuits an easy-to-configure microcontroller peripheral that provides system-
side fuel gauging for single-cell lithium-ion batteries. The device requires minimal user 
configuration and system microcontroller firmware development. The battery fuel gauge uses the 
impedance track algorithm for fuel gauging and provides information such as remaining battery 
capacity (mAh), state-of-charge (%), and battery voltage (mV).  

6 Verification and Measured Performance 
This section describes the iOS based application that is used with this design. 

6.1 HealthHUD Demonstration Suite 

The figure below shows the Health HUD measurement setup. The setup requires an iOS based 
machine (iPad) and the Biometric Steering Wheel to acquire the data. 

6.2 HealthHUD App 

Health HUD is designed to allow the control and display of many BLE enabled health monitoring 
devices on a single screen. The Biometric Steering wheel uses a total of 3 and therefore the 
screen is divided into 3 discrete areas which show respiration, ECG, and pulse. 
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6.3 Demonstration Usage 

 
Figure 14: HealthHUD iPad Application 

6.3.1 Scale and Common Operations 

When looking at the app, the x-axis will not be the same scale for each waveform. The 
respiration waveform shows 30 seconds of data. The ECG signal shows 15 seconds of data. 
Lastly, the pulse rate signal shows 10 seconds of data.  

6.3.2 Find Devices 

The first step in initiating a connection to a Health HUD demonstration device is to have the iPad 
app find the device.  This automatically happens when the app is opened. To this end, the 
desired device must be in advertising mode. Generally the devices will advertise any time they 
are turned on and not connected. When the devices are in advertising mode an LED (green for 
AFE4400 or blue for AFE4300) on the board will be flashing. To find a device choose the proper 
3 digit number desired, located in the top left corner of the app. 

Respiration Rate Waveform using the 
AFE4300 

ECG Waveform using the AFE4300 

Pulse Rate Waveform using the AFE4400 

Shows which devices are connected via 
Bluetooth 
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6.3.3 Connection 

The second step is to form a connection.  Once the device is found the iPad app will 
automatically connect to it over Bluetooth low energy.  

After connection, the LED will stop flashing and remain on and the device is reporting data.  

NOTE: if after selecting a device from the selector the device control becomes unavailable, an 
immediate disconnect has occurred.  If this happens repeatedly the devices batteries may be 
depleted. 

6.4 Measured Results 

To get the best signal from each device, it is best to cover as much surface area as possible on 
the electrodes as well as make a good connection the HR sensor.  The device is highly sensitive 
to motion artifacts.  The quality of the output data is highly dependent on the stillness of the 
user’s hands. The effect of motion can be visualized by moving periodically as the data is being 
transmitted.   
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Appendix A. Design Resources 
Design Archive (ZIP File) All design files 

AFE4400 Product Folder 

AFE4300 Product Folder 

http://www.ti.com/product/afe4400
http://www.ti.com/product/afe4300
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Appendix B. Acronyms 
1. PCB: Printed Circuit Board 

2. HRM: Heart Rate Monitor 

3. PPG: photoplethysmography 

4. LED: Light Emitting Diode 

5. MCU: Microcontroller Unit 

6. BLE: Bluetooth Low Energy 

7. FRAM: Ferroelectric Random Access Memory 

8. ECG: Electrocardiogram 

9. AFE: Analog Front End 

10. WS: Weight-Scale 

11. SPS: Samples Per Second 

12. ADC: Analog to Digital Converter 

13. BCM: Body Composition 

14. PC: Personal Computer 

15. TI: Texas Instruments 

16. TIA: Transimpedance Amplifier 

17. RX: Receiver 

18. DAC: Digital to Analog Converter 
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