
1SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

Technical Brief
SPRY288B–July 2015–Revised April 2020

Enhancing the Computational Performance of the C2000™
Microcontroller Family

Kenneth W. Schachter... C2000 Technical Staff

ABSTRACT
Engineers designing real-time control systems are constantly faced with the challenge of optimizing
performance. These systems require minimal processing latency in order to meet the control loop
performance specifications. At the heart of the control systems are math intensive algorithms which are
used to calculate the control signals. Utilizing a microcontroller (MCU) that can quickly and efficiently
execute mathematical operations is critical towards this objective. Ideally, this MCU would be able to
execute the real-time control loops concurrently with the central processing unit (CPU) while it is
performing other required tasks. This paper discusses five integrated on-chip hardware math
enhancements that dramatically increase the performance of the MCU in many real-time applications.
These math enhancements boost the CPU processing capabilities by utilizing extended instruction sets,
additional registers, and hardware. When combining a high performance CPU with these advanced
hardware enhancements, the fast and efficient processing power required for complex real-time control
systems can be realized.

Contents
1 Introduction ... 2
2 Floating-Point Unit (FPU) ... 2
3 Control Law Accelerator (CLA)... 3
4 Trigonometric Math Unit (TMU) .. 5
5 Fast Integer Division Unit (FINTDIV) .. 6
6 Viterbi, Complex Math, and CRC Unit (VCU) .. 7
7 Summary.. 9
8 References ... 9

List of Figures

1 System Block Diagram with Math Enhancements .. 2
2 TMU Performance Improvement for Park Transform Example .. 5
3 VCU Performance Improvements Compared to Software-Only Implementations 8

List of Tables

1 FPU Performance Improvements.. 3
2 CLA Performance Improvements.. 4
3 TMU Supported Instructions Summary ... 5
4 TMU Performance Improvements ... 6
5 FINTDIV Performance Improvements... 6

Trademarks
C2000 is a trademark of Texas Instruments.

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

Introduction www.ti.com

2 SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

1 Introduction
Real-time control systems require fast and efficient processing, with latency kept to a minimum in order to
maintain stability and boost overall performance. In addition, the increasing sophistication of modern motor
systems, power electronics, smart grid technology, robotics, and similar applications require the central
processor to keep up with numerous tasks simultaneously.

The C2000 family of microcontrollers (MCUs) from Texas Instruments addresses these challenges with an
array of integrated on-chip hardware math enhancements that dramatically increase the performance of
the MCU in many real-time applications. The five key enhancements are:
• Floating-Point Unit (FPU)
• Control Law Accelerator (CLA)
• Trigonometric Math Unit (TMU)
• Fast Integer Division Unit (FINTDIV)
• Viterbi, Complex Math, and CRC Unit (VCU)

Figure 1. System Block Diagram with Math Enhancements

At the center of each C2000 MCU lies a fast fixed-point central processing unit (CPU) that on its own
provides excellent 32-bit processing capabilities. The FPU provides seamless integration of floating-point
hardware into the CPU. To augment this further, the CLA provides an independent floating-point CPU
operating at the full speed of the device and it is designed to perform control law computations with
minimal latency. This effectively doubles the raw computing capabilities of the device. The TMU provides
hardware support for common trigonometric math functions, while the FINTDIV enables fast integer
division operations. The VCU adds hardware support for communications, complex math, and CRC
calculations. This paper provides an overview of each of these math enhancements.

2 Floating-Point Unit (FPU)
Many control system designs typically start with simulation tools, where the algorithms are developed with
floating-point math. These algorithms can then easily be ported to a microcontroller that has native
floating-point math support. Floating-point math provides a large dynamic range, thereby making it easier
to develop code compared to fixed-point math. The programmer no longer needs to worry about scaling
and saturation. Additionally, robustness is improved since floating-point values do not wrap around the
number line on an overflow or underflow, as they would in fixed-point math. These characteristics enable
the high performance mathematical capabilities that are needed for advanced control systems. Also, the
C2000 MCU architecture has been optimized to support high-level language programming, along with
seamless support from a complete set of TI development tools.

The C2000 MCUs feature a C28x CPU that is designed around a 32-bit fixed-point accumulator-based
architecture. It utilizes the best features of digital signal processors and microcontroller architectures. The
addition of the FPU to the C28x fixed-point CPU enables the C2000 MCUs to support hardware IEEE-754
single-precision floating-point format operations. Devices with the C28x+FPU add an extended set of
floating-point registers and instructions to the standard C28x architecture. These additional registers are:
eight floating-point result registers, a floating-point status register, and a repeat block register. The repeat
block adds zero overhead looping, which enables flexibility to the processor over the repeat single
instruction. All of the registers are shadowed, except the repeat block register. Shadowing is useful with
high priority interrupts for fast context save and restore of the floating-point registers.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

www.ti.com Control Law Accelerator (CLA)

3SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

Some C2000 MCUs are available with a FPU64 that provides hardware support for both IEEE-754 single-
precision and double-precision floating-point operations. Devices with the C28x+FPU64 utilize the same
registers as the FPU except for the addition of eight floating-point results extension registers for the
double-precision floating-point operations. The FPU64 enhancements support all existing FPU single-
precision floating-point instructions in addition to the 64-bit double-precision floating-point instructions.

The compiler tools provide C programming support for the CPU which makes it easy to write software, in
addition to porting existing code. Since the FPU instructions are extensions of the standard C28x
instruction set, most instructions operate in one or two pipeline cycles and some can be done in parallel.
The FPU64 64-bit instructions operate in one to three pipeline cycles and some can be done in parallel,
too. Floating-point performance dramatically enhances the mathematical computation horsepower used in
signal processing and control algorithms.

Table 1. FPU Performance Improvements

Function Type
FPU

Cycles
FPU64
Cycles

Fixed
Cycles Improvements/Comments

Complex FFT 512 pt 24243 43935 63192 2.61x (FPU) / 1.44x (FPU64) vs Fixed Point
1024 pt 53219 98683 141037 2.65x (FPU) / 1.43x (FPU64) vs Fixed-Point

Real FFT 512 pt 13670 20219 34513 2.52x (FPU) / 1.71x (FPU64) vs Fixed-Point
1024 pt 30352 45476 76262 2.51x (FPU) / 1.68x (FPU64) vs Fixed-Point

Square Root Compiler
intrinsic 22 22 64 2.91x (FPU/FPU64) vs Fixed-Point – both modes use 32-

bit float-point arguments
Finite impulse
response (FIR) 64 pts 119 280 111 0.93x (FPU) / 0.40x (FPU64) vs Fixed-Point – FIR

algorithms using circular addressing mode

3 Control Law Accelerator (CLA)
Enabling extremely high performance computation and efficient processing is critical for solving today’s
complex real-time control applications. Real-time control systems require minimal latency where the time
delay between sampling, processing, and outputting must fit within a tight time window in order to meet
performance objectives. For example, a typical digital power controller consists of an ADC to read the
input signals (e.g. voltage and current), a math engine to compute the control law algorithms (e.g. PID, 2-
pole/2-zero, and 3-pole/3-zero compensators), and a PWM channel to output the calculated waveform.
Many advanced control systems would greatly benefit from an architecture that integrates these functions
in such a way as to minimize latency, yielding the absolute minimum sample to output delay. Ideally, this
architecture would execute time-critical control loops concurrently with the main CPU and free it up to
perform other required tasks. In addition, the architecture must have a built-in protection mechanism to
guard against over-current and over-voltage conditions. To address these important requirements, TI
developed the CLA.

The CLA is a fully-programmable independent 32-bit floating-point hardware accelerator that is designed
for math intensive computations. This accelerator can offer a significant boost to the performance of
typical math functions that are commonly found in control algorithms. The CLA is designed to execute
real-time control algorithms in parallel with the C28x CPU, effectively doubling the computational
performance. This makes the CLA perfect for managing low-level control loops with higher cycle
performance improvements over the C28x CPU. Another advantage of the CLA is that since it directly
accesses memory, the overhead penalty for managing a data page pointer is removed. Additionally, the
multiplier on the CLA does not require any delay slots, thus providing true single-cycle performance. A
device using the CLA can achieve about a 1.3 times performance improvement over the C28x CPU for
applications like motor control and solar, as shown in the table below. Furthermore, by using the CLA to
service time-critical functions, the C28x CPU is freed up for other tasks, such as communications and
diagnostics.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

Control Law Accelerator (CLA) www.ti.com

4 SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

Table 2. CLA Performance Improvements

Application

Number of Execution Cycles

Improvement
CPU CLA

Min/Max Min/Max
Motor AC Induction 888/952 639/694 1.39x (vs CPU)
Power CNTL 2p2z 48 39 1.23x (vs CPU)
Power CNTL 3p3z 68 52 1.31x (vs CPU)

The CLA is able to minimize latency because it has direct access to the various control peripherals such
as the ADC and PWM modules. Utilizing this low-latency architecture and capability to directly access the
various control peripherals provides a fast trigger response. The CLA is able to read the ADC result
register on the same cycle that the ADC sample conversion is completed. This “just-in-time” reading of the
ADC reduces the sample to output delay and enables faster system response for higher frequency control
loops.

Programming the CLA consists of initialization code and tasks. A task is similar to an interrupt service
routine, and once started it runs to completion. Each task is capable of being triggered by a variety of
peripherals without CPU intervention. This makes the CLA very efficient since it does not use interrupts for
hardware synchronization, nor must the CLA do any context switching. Compared with the traditional
interrupt-based scheme, the CLA approach eliminates jitter, and furthermore the execution time becomes
deterministic. It supports eight independent tasks, each of which is mapped back to an event trigger, such
as a timer or the availability of an ADC result. Separate tasks can be used to support multiple control
loops or phases at the same time.

Some C2000 devices feature an enhanced version of the CLA with the option of running the lowest priority
task as a background task. Once triggered, it runs continuously until it is terminated or reset by the CLA or
MCU. The remaining tasks in priority order can interrupt the background task when they are triggered. If
needed, portions of the background task can be made uninterruptible. Typical uses of the background task
include running continuous functions, such as communications and clean-up routines.

Another key benefit of the CLA, over hardware-based control law implementations, is flexibility. The CLA
is a fully software programmable solution where developers can freely modify their control system without
the time and high cost required to redesign a hardware-based solution. Also, the CLA is significantly more
power-efficient in executing operations when compared to the main C28x CPU which is an advantage for
power-sensitive applications.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

www.ti.com Trigonometric Math Unit (TMU)

5SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

4 Trigonometric Math Unit (TMU)
The TMU is an extension of the FPU and enhances the instruction set of the C28x+FPU by efficiently
executing trigonometric and arithmetic operations that are commonly used in control system applications.
Similar to the FPU, the TMU is an IEEE-754 floating-point math unit tightly coupled with the CPU.
However, where the FPU provides general-purpose floating-point math support, the TMU focuses on
accelerating several specific trigonometric math operations that would otherwise be quite cycle intensive.
These operations include sine, cosine, arctangent, divide, and square root. Some C2000 devices include
an enhanced version of the TMU for supporting nonlinear PID applications. Additional instructions have
been added for efficient computation of logarithm and inverse exponent operations which are used in the
nonlinear control law. The TMU instructions include:

Table 3. TMU Supported Instructions Summary

Operation C Equivalent Operation
Multiply by 2*pi a = b * 2pi
Divide by 2*pi a = b / 2pi
Divide a = b / c
Square Root a = sqrt(b)
Sin Per Unit a = sin(b*2pi)
Cos Per Unit a = cos(b*2pi)
Arc Tangent Per Unit a = atan(b)/2pi
Arc Tangent 2 and Quadrant Operation Operation to assist in calculating ATANPU2
Logarithm a = LOG2(b)
Inverse Exponent a = 2-|b|

The TMU uses the same pipeline, memory bus architecture, and FPU registers as the C28x+FPU, thereby
removing any special requirements for interrupt context save or restore.

The C2000 compiler has built-in support that allows automatic generation of the TMU instructions. The
user writes code in C using math.h functions, and the compiler uses the TMU instructions, where
applicable, instead of run-time support library calls. This results in significantly fewer cycles and
dramatically increases the performance of trigonometric operations.

The TMU can have a significant impact on many commonly used real-time control algorithms such as:
• Park and Inverse Park Transforms
• Space Vector Generation
• dq0 and Inverse dq0 Transforms
• FFT Magnitude and Phase Calculations

For example, a Park Transform typically takes anywhere from 80 to more than 100 cycles to execute on
the FPU. With the TMU a Park Transform takes only 13 cycles, yielding an 85 percent improvement as
compared to without the TMU.

Figure 2. TMU Performance Improvement for Park Transform Example

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

Fast Integer Division Unit (FINTDIV) www.ti.com

6 SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

In a typical system application, such as digital motor control (AC induction and permanent magnet) and 3-
phase solar applications, about a 1.4 times performance improvement can be achieved using the TMU
over just the FPU.

Table 4. TMU Performance Improvements

Application

Number of Execution Cycles

Improvement
FPU TMU

Min/Max Min/Max
Motor AC Induction 888/952 593/670 1.42x (vs FPU)

Motor Permanent Magnet 783/786 547/592 1.32x (vs FPU)
Solar 3-Phase 1351/1358 985/983 1.38x (vs FPU)

An existing C28x design can realize an immediate advantage using the TMU without the need to rewrite
any code. Simulation-based generated code can realize the same benefits. Portability is maintained since
the same code can be used on TI MCUs with and without the TMU support.

5 Fast Integer Division Unit (FINTDIV)
The FINTDIV extended instruction set optimally supports fast division operations commonly found in
adaptive control systems for scaling parameters based on a variable. All instructions execute in a single
cycle and three types of integer division are supported (Truncated, Modulus, Euclidean) of varying data
type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned or signed formats. Truncated format is the
traditional division performed in C language (where “/” is the integer, and “%” is the remainder); however,
the integer value is non-linear around zero. Modulus and Euclidean formats are more appropriate for
precise control applications because the integer value is linear around the zero point, and this avoids
potential calculation hysteresis. Both the Modulus and Euclidean divisions are supported by C intrinsics,
and the C28x compiler supports all three division formats for all data types. Since the FINTDIV uses the
existing FPU register set to carry out the FINTDIV operations, there are no special considerations relating
to interrupt context save and restore.

Table 5. FINTDIV Performance Improvements

Operation
Number of Execution Cycles

Improvement (vs CPU)CPU (‘/’ C operator) FINTDIV (intrinsics)
i16/i16 Truncated 52 16 3.3x
i16/i16 Euclidean and Modulus 56 14 4.0x
u16/u16 56 14 4.0x
i32/i32 Truncated 59 13 4.5x
i32/i32 Euclidean and Modulus 63 14 4.5x
i32/u32 Truncated 37 14 2.6x
i32/u32 Modulus 41 14 2.9x
u32/u32 37 12 3.1x
i32/i16 Truncated 60 18 3.3x
i32/i16 Euclidean and Modulus 64 16 4.0x
u32/u16 38 13 2.9x
i64/i64 Truncated (1) 78 – 2631 42 1.9x – 62.6x
i64/i64 Euclidean & Modulus (1) 82 – 2635 42 2.0x – 62.7x
i64/u64 Truncated (1) 54 – 2605 42 1.3x – 62.0x
i64/u64 Euclidean & Modulus (1) 58 – 2609 42 1.4x – 62.1x
u64/u64 (1) 53 – 2548 42 1.3x – 60.7x

(1) FINTDIV implements 64-bit integer division that is optimized in a fixed number of cycles for deterministic behavior. Without the
FINTDIV acceleration enabled, 64-bit integer division is implemented with generic CPU instructions and the number of cycles
can vary significantly based on the value of the numerator and denominator.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

www.ti.com Viterbi, Complex Math, and CRC Unit (VCU)

7SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

6 Viterbi, Complex Math, and CRC Unit (VCU)
Todays advanced control systems, such as motor control and power applications, can benefit from
intelligent management and communications to optimize efficient operation. Power line communications
(PLC) has become an ideal solution for intelligent management since the existing infrastructure can be
used cost effectively. Communicating data in noisy environments is very challenging and computationally
intensive. A typical microcontroller running a control application at its limit cannot tolerate the additional
burden of supporting power line communications, and may require an additional processor. To solve this
problem, TI developed the VCU. The VCU is a tighly coupled fixed-point unit that improves performance of
communications-based applications by a factor of roughly seven times. Additionally, cost savings are
realized by eliminating the need for a separate processor. Besides communications, the VCU is very
useful for general-purpose signal processing applications such as filtering and spectral analysis. For
example, spectral analysis can be used to process motor vibration noise to determine the impact of
vibration on a system, estimate the motor operating life, and calibrate the control loop to improve
efficiency.

The VCU has been designed to be flexible in supporting various communications technologies. For the
typical MCU, four key operations consume most of the processing power: Viterbi decoding, complex Fast
Fourier Transform (FFT), complex filters, and Cyclical Redundancy Check (CRC). Using the hardware
capabilities of the VCU, an application will significantly benefit by the increased performance over a
software implementation. As an example, the performance contributions of each key operation are:
• Viterbi decoding is commonly used in baseband communications applications. The Viterbi decode

algorithm consists of three main parts – branch metric calculation, add-compare-select (Viterbi
butterfly), and traceback operation. With the VCU, the branch metric calculation can be completed in a
single cycle (code rate = 1/2, and two cycles for code rate = 1/3). The Viterbi butterfly takes 2 cycles
per stage, as compared to 15 cycles per stage without the VCU. The traceback takes 3 cycles per
stage, as compared to 22 cycles per stage without the VCU.

• The complex FFT is used in spread spectrum communications, as well as many other signal
processing algorithms. For a 16-bit fixed-point complex FFT the VCU only requires 5 cycles per stage,
as compared to approximately 20 cycles per stage without the VCU.

• Complex filters are used to improve data reliability, transmission distance, and power efficiency, and
are commonly used in other various signal processing applications. The VCU can perform a complex I
and Q multiply with coefficients (four multiplies) in a single cycle, as compared to approximately 10
cycles without the VCU. In addition, the VCU can read/write the real and imaginary parts of 16-bit
complex data to memory in a single cycle.

• CRC algorithms are used for verifying data integrity over large data blocks, communication packets, or
code sections. The VCU can perform 8-bit, 16-bit, 24-bit, and 32-bit CRCs completely in the
background, offloading the main C28x CPU. For example, the VCU can compute the CRC for a block
length of 10 bytes in 10 cycles, as compared to approximately 250 cycles without the VCU. A CRC
result register contains the current CRC and is updated each time a CRC instruction is executed. This
simplifies the CRC calculations and access to the final CRC value.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

Viterbi, Complex Math, and CRC Unit (VCU) www.ti.com

8 SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

Figure 3. VCU Performance Improvements Compared to Software-Only Implementations

Devices with the C28x+VCU add an extended set of registers and instructions to the standard C28x
architecture, which are used to support the acceleration of communications-based algorithms. The
additional registers are: nine result registers, two traceback registers, a configuration and status register,
and a CRC result register. The VCU performs fixed-point operations using the same existing instruction
set format, pipeline, and memory bus architecture as C28x.

Programming the VCU is made easy with TI’s C2000Ware software suite. TI provides a complete library of
C-callable assembly functions. These functions are implemented using the VCU instruction set to optimize
efficiency and minimize overhead. TI also provides higher-level functions to support PLC communications
standards such as PRIME and G3.

Some devices utilize a dedicated cyclic redundancy check unit (VCRC) rather than the full featured VCU
for applications not requiring Viterbi decoding or complex math support. This enhanced VCRC is an
extension of the C28x CPU and it includes registers and instructions to support CRC algorithms. CRC
algorithms provide a straightforward method for verifying data integrity over large data blocks,
communication packets, or code sections. The VCRC can perform 8-bit, 16-bit, 24-bit, and 32-bit CRCs,
and it is capable of computing the polynomial code checksum for a block length of 10 bytes in 10 cycles (a
byte of data in a single cycle). For custom CRC polynomials the execution time increases to three cycles.
A CRC result register contains the current CRC, which is updated whenever a CRC instruction is
executed.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

www.ti.com Summary

9SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

7 Summary
Utilizing the high performance C28x CPU along with the advanced hardware math enhancements
described in this paper, the TI C2000 family of MCUs provides the advanced processing power required
for today’s complex real-time control systems. Combining these enhancements with the various control-
optimized peripherals, such as high-speed ADCs and high-resolution PWMs, engineers can minimize
latency while increasing system performance. TI provides a comprehensive set of development tools and
software that enable engineers to quickly design, test, and produce extremely reliable control systems. A
wide range of TI C2000 MCUs are available to solve the most demanding control system requirements.

The C2000 MCU family includes a wide array of devices that have been designed for both high
performance and low-cost real-time control applications. Based on an extremely fast C28x CPU, advanced
control peripherals, and integrated analog functions, the C2000 MCUs can reduce system cost while
increasing system reliability. Combining the CPU with the CLA running concurrently can effectively double
the throughput of the device. Additionally, some family members feature a dual-core microcontroller, and
when combining each CPU with its own CLA, the device has the capability for delivering the equivalent of
up to four times the performance of a single CPU. Conversely, other family members feature a high level
integration of control and analog peripherals for reducing system complexity and offers greater efficiency
for cost-sensitive designs.

The C2000 family of MCUs is ideal for applications requiring advanced real-time signal processing such
as industrial drives, digital power, renewable energy, smart sensing, white goods appliances, motor
control, electric vehicle and hybrid electric vehicle (EV/HEV).

8 References
For additional information about the C2000 MCU family, see the TI web site at:
• http://www.ti.com/c2000

The availability of the various math units and peripherals on each device can be found in the following
document:
• Texas Instruments: C2000 Real-Time Control Peripheral Reference Guide

For detailed information about the CLA, see the device-specific Technical Reference Manual.

The extended instruction sets for the FPU, TMU, FINTDIV, VCRC, and VCU can be found in the following
document:
• Texas Instruments: TMS320C28x Extended Instruction Sets Technical Reference Manual

Details about the FPU, TMU, and FINTDIV intrinsics for providing ease of software development can be
found in the following document:
• Texas Instruments: TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B
http://www.ti.com/c2000
http://www.ti.com/lit/pdf/SPRU566
http://www.ti.com/lit/pdf/SPRUHS1
http://www.ti.com/lit/pdf/SPRU514

Revision History www.ti.com

10 SPRY288B–July 2015–Revised April 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (November 2016) to B Revision ... Page

• The title of this document was updated. ... 1
• Update was made in the Abstract of this document. ... 1
• Updates were made in Section 1.. 2
• Updates were made in Section 2 ... 2
• Updates were made in Section 3.. 3
• Updates were made in Section 4.. 5
• Added new Section 5. .. 6
• Updates were made in Section 6.. 7
• Updates were made in Section 7.. 9
• Added new Section 8. .. 9

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288B

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Enhancing the Computational Performance of the C2000 Microcontroller Family
	1 Introduction
	2 Floating-Point Unit (FPU)
	3 Control Law Accelerator (CLA)
	4 Trigonometric Math Unit (TMU)
	5 Fast Integer Division Unit (FINTDIV)
	6 Viterbi, Complex Math, and CRC Unit (VCU)
	7 Summary
	8 References

	Revision History
	Important Notice

